5.4.2实对称矩阵的对角化定理设阶实对称矩阵,则必有正交矩阵,使,其中是以的个特征值为对角元素的对角阵.证明思路:回顾对于𝑝𝑖1,𝑝𝑖2,⋯,𝑝𝑖𝑟𝑖⟶𝑞𝑖1,𝑞𝑖2,⋯,𝑞𝑖𝑟𝑖⟶𝑃=(𝑞11,𝑞12,⋯,𝑞1𝑟1,⋯⋯,𝑞𝑠1,𝑞𝑠2,⋯,𝑞𝑠𝑟𝑠).利用正交矩阵将对称矩阵对角化的方法1.求对称矩阵的特征值;2.由=0求出的线性无关的特征向量;3.将特征向量正交化;4.将特征向量单位化;5.构造正交矩阵.解的特征多项式为例1设求一个正交矩...