标签“练习”的相关文档,共3372条
  • 专题12 高中数学选修2-1综合练习(解析版)

    专题12 高中数学选修2-1综合练习(解析版)

    专题12选修2-1综合练习一、选择题1.已知、,则“”是“直线与直线平行”的()。A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件【参考答案】C【解析】若直线与直线平行,则有,即,且当时,两直线重合,舍去,∴,即是直线与直线平行的充要条件,故选C。2.下列推断错误的是()。A、命题“若,则”的逆否命题为“若,则”B、命题:存在,使得,则:任意,都有C、若且为假命题,则、均为假命题D、“”是“”的充分不...

    2024-04-0702.1 MB0
  • 初中形容词及副词用法总结及练习(整理版)[共9页]

    初中形容词及副词用法总结及练习(整理版)[共9页]

    形容词和副词用法总结及练习形容词→(名词一、形容词的用法:Thereisavillage.村子附近有一(一)概念:形容词修饰名词,说明事物或人的性质或特征,通常可将形容词分成性质形容词和叙述形容词两类,其位置不一定都放在名词前面。【重点】2)当形容词词组something,anyt等的时候,便会出1.直接说明事物的性质或特征的形容词是性质形容词。Theboyinteres【难点】对音乐赶兴趣的那2.叙述形容词只能作表语,所以又称为表语形容词,这类...

    2024-04-0731.03 MB0
  • 专题06 数列(同步练习)A卷(原卷版)附答案

    专题06 数列(同步练习)A卷(原卷版)附答案

    专题06数列(同步练习)A卷一、数列的递推公式与通项公式(一)明确指出等差或等比数列:1、设等差数列的首项为,公差为(),形成关于和的方程组,解和;2、设等比数列的首项为,公比为(且),形成关于和的方程组,解和;例1、已知为等差数列,且,,求数列的通项公式。例2、已知等差数列的前项和为,且满足:,,求数列的通项公式。例3、已知等比数列的前项和为,若,且,,成等差数列,求的通项公式。例4、已知等比数列的前项和为,公比不为,若,则对...

    2024-04-0701.28 MB0
  • 专题11 空间向量与立体几何综合练习(理)(原卷版)

    专题11 空间向量与立体几何综合练习(理)(原卷版)

    专题11空间向量与立体几何综合练习一、选择题1.设空间向量是空间向量的相反向量,则下列说法错误的是()。A、与的长度相等B、与可能相等C、与所在的直线平行D、是的相反向量2.如图所示,空间四边形中,,,,点在上,且,为中点,则()。A、B、C、D、3.已知四面体,是的重心,且,若,则为()。A、B、C、D、4.的顶点分别为、、,则边上的高的长为()。A、B、C、D、5.若两点的坐标是,,则的取值范围是()。A、B、C、D、6.已知平面、的法向量分...

    2024-04-0701.29 MB0
  • 专题31 数列综合练习(解析版)

    专题31 数列综合练习(解析版)

    专题31数列综合练习一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列公式可作为数列:,,,,,,的通项公式的是()。A、B、C、D、【参考答案】C【解析】由可得,,,,,故选C。2.数列中“、、()成等比数列”是“”的()。A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【参考答案】A【解析】,、、成等比数列,则,反之,则不一定成立,举反例,如数列为、、、...

    2024-04-0701.01 MB0
  • 非谓语动词练习100题[共12页]

    非谓语动词练习100题[共12页]

    B.shecanthelpcryingD.havingbeenpublishedC.foryoutogo9.Theyspentthenight______intheroom.A.havinglockedB.lockingB.tohavebeenhappenedD.tobehappened2A.megoing21.Ihavealotofletters___________.A.dealwithB.todealC.formetogoA.topassB.tohavepassed24.Haveyougotused_______upearly?A.togetB.togettingB.LosingB.beingdone;doneD.beingdone;doing3C.havemet4A.spoken;topractisespeakingC.speaking;topractisetospeakB....

    2024-04-070831.39 KB0
  • 专题09 空间向量与立体几何(同步练习)(理)(原卷版)附答案

    专题09 空间向量与立体几何(同步练习)(理)(原卷版)附答案

    专题09空间向量与立体几何(同步练习)一、空间向量基础知识1-1.对于任意空间向量,给出下列三个命题:①;②若,则为单位向量;③。其中真命题的个数为()。A、B、C、D、1-2.在四面体中,是重心,是上一点,且,若,则为()。A、B、C、D、1-3.设,,,,(其中、、是两两垂直的单位向量),若,则实数、、的值分别是()。A、,,B、,,C、,,D、,,二、直线与直线成角2-1.如图所示,点在正方形所在的平面外,平面,,则异面直线与所成的角是()。A、B、...

    2024-04-0701.33 MB0
  • 专题30 数列(同步练习)(理)(原卷版)

    专题30 数列(同步练习)(理)(原卷版)

    专题30数列(同步练习)一、数列的递推公式(一)数列的递推公式与通项公式1、数列的递推公式:如果已知数列的第项(或前几项),且从第项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。2、数列的通项公式:如果数列的第项与之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。3、数列通项公式和递推公式的特...

    2024-04-070714.38 KB0
  • 专题38 空间几何体(同步练习)(文)(解析版)

    专题38 空间几何体(同步练习)(文)(解析版)

    专题38空间几何体(同步练习)一、基础概念例1-1.下列说法正确的是()。A、如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等B、五棱锥只有五条棱C、一个棱柱至少有五个面D、棱台的各侧棱延长后交于一点【参考答案】CD【解析】四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等,A错误,五棱锥除了五条侧棱外,底面上还有五条棱,故共条棱,B错误, 一个棱柱最少有三个侧面,两个底面,故至少有五个面,C正确, 棱台是由平行...

    2024-04-0711.46 MB0
  • 专题07 直线和圆的方程综合练习(原卷版)附答案

    专题07 直线和圆的方程综合练习(原卷版)附答案

    专题07直线和圆的方程综合练习一、选择题1.直线的倾斜角的取值范围是()。A、B、C、D、2.已知直线:与圆:交于、两点,则()。A、B、C、D、3.已知,两点,直线:与线段相交,则直线的斜率的取值范围为()。A、B、C、D、4.已知直线被圆:所截得的弦长为,则()。A、B、C、D、5.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有大众点,则的最大值是()。A、B、C、D、6.若平面内两条平行线:,:...

    2024-04-0701.64 MB0
  • 专题39 空间几何体综合练习(新高考地区专用)(原卷版)

    专题39 空间几何体综合练习(新高考地区专用)(原卷版)

    专题39空间几何体综合练习一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是()。A、圆锥B、圆柱C、球D、棱柱2.如图所示,在多面体中,已知四边形是边长为的正方形,且、均为正三角形,,,则该多面体的体积为()。A、B、C、D、3.如图所示,已知一圆台上底面半径为,下底面半径为,母线长为,其中在上底面上,在下底面上,...

    2024-04-070614.72 KB0
  • 专题14 导数(同步练习)(理)(解析版)

    专题14 导数(同步练习)(理)(解析版)

    专题14导数(同步练习)专题一导数的图像例1-1.如图,函数的图像在点处的切线方程是,则()。A、B、C、D、【参考答案】C【解析】 ,∴,∴,∴,故选C。例1-2.函数的图像如右图所示,则导函数的图像的大致形状是()。A、B、C、D、【参考答案】D【解析】先增后减再不变,则先小于零后大于零最后等于,故选D。例1-3.已知的图像如图,则()。A、B、C、D、【参考答案】A【解析】由图可知,又,则,故选A。例1-4.函数的图像如图所示,则下列结论...

    2024-04-0702.26 MB0
  • 专题39 空间几何体综合练习(理)(解析版)

    专题39 空间几何体综合练习(理)(解析版)

    专题39空间几何体综合练习一、选择题:本题共12小题,每小题5分,共60分。1.用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是()。A、圆锥B、圆柱C、球D、棱柱【参考答案】D【解析】用一个平面去截圆锥、圆柱、球均可以得到圆面,但截棱柱一定不会产生圆面,故选D。2.如右图所示,在正方体中,、分别是、的中点,则图中阴影部分在正方体的六个面上的正投影(投射线垂直于投射面所得的平行投影)可能为下图中的()。①②③...

    2024-04-0701.37 MB0
  • 专题12 基本初等函数综合练习(理)(解析版)

    专题12 基本初等函数综合练习(理)(解析版)

    专题12基本初等函数综合练习一、选择题(本题共12小题,每小题5分,共60分)1.当时,下列函数的图像全在直线下方的偶函数是()。A、B、C、D、【参考答案】B【解析】 为偶函数,排除A、D,又当时,图像在直线下方,故合适,故选B。2.设且,则“函数在上是减函数”是“函数在上是增函数”的()。A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件【参考答案】A【解析】:函数在上是减函数,:函数在上是增函数,即...

    2024-04-0701.2 MB0
  • 专题12 高中数学选修2-1综合练习(原卷版)附答案

    专题12 高中数学选修2-1综合练习(原卷版)附答案

    专题12选修2-1综合练习一、选择题1.已知、,则“”是“直线与直线平行”的()。A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件2.下列推断错误的是()。A、命题“若,则”的逆否命题为“若,则”B、命题:存在,使得,则:任意,都有C、若且为假命题,则、均为假命题D、“”是“”的充分不必要条件3.已知,,且、、不共面,若,则()。A、B、C、D、4.给定下列命题:①若是平面的斜线,直线垂直于在内的射影,则...

    2024-04-0702.65 MB0
  • 分数乘法应用题分类练习[共4页]

    分数乘法应用题分类练习[共4页]

    例1、一袋大米100千克,吃了,吃了多少千克?2绳子的几分之几,再求第二次用去多少米,列式是4、六年级同学给灾区的小朋友捐款,一班捐了500元,二班捐的是一班4数是二居室的。教师公寓有一居室多少套?3×=27(人),综合算式是72×(1-)4科教兴国

    2024-04-070845.48 KB0
  • 专题14 导数(同步练习)(理)(原卷版)附答案

    专题14 导数(同步练习)(理)(原卷版)附答案

    专题14导数(同步练习)专题一导数的图像例1-1.如图,函数的图像在点处的切线方程是,则()。A、B、C、D、例1-2.函数的图像如右图所示,则导函数的图像的大致形状是()。A、B、C、D、例1-3.已知的图像如图,则()。A、B、C、D、例1-4.函数的图像如图所示,则下列结论成立的是()。A、,,,B、,,,C、,,,D、,,,例1-5.已知函数(),则函数的图像可能是()。A、B、C、D、例1-6.设函数在上可导,其导函数为,且函数的图像如图所示,则下列结论中...

    2024-04-0703.06 MB0
  • 空白地图填图练习[共8页]

    空白地图填图练习[共8页]

    海峡:A直布罗陀海峡运河:D苏伊士运河E巴拿马运河岛屿:F格陵兰岛G马达加斯加岛半岛:H阿拉伯半岛I印度半岛K斯堪的纳维亚半岛L伊比利亚半岛G巴西高原平原:H东欧平原I西西伯利亚平原J亚马孙平原K刚果盆地2亚热带季风和季风性湿润气候气高山气候3“”四、请在世界重要经纬线经过的地形剖面图上写出数字①~○12代表的地形名称4562.标出各省省会城市的7科教兴国天山、阴山、昆仑山、秦岭、南岭;8

    2024-04-0703.61 MB0
  • 专题38 空间几何体(同步练习)(文)(原卷版)

    专题38 空间几何体(同步练习)(文)(原卷版)

    专题38空间几何体(同步练习)一、基础概念例1-1.下列说法正确的是()。A、如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等B、五棱锥只有五条棱C、一个棱柱至少有五个面D、棱台的各侧棱延长后交于一点例1-2.下列说法中正确的是()。A、有两个面平行,其余各面都是四边形的几何体叫棱柱B、有两个面平行,其余各面都是平行四边形的几何体叫棱柱C、有一个面是多边形,其余各面都是梯形的几何体叫棱台D、有一个面是多边形,其...

    2024-04-070720.07 KB0
  • 专题28 平面向量综合练习(理)(解析版)

    专题28 平面向量综合练习(理)(解析版)

    专题28平面向量综合练习一、选择题:本题共12小题,每小题5分,共40分。1.已知平面向量,,若存在实数,使得,则实数的值为()。A、B、C、D、【参考答案】D【解析】 ,∴,则,解得或,又,∴,∴,故选D。2.已知向量,,且,则向量与的夹角为()。A、B、C、D、【参考答案】C【解析】 ,,∴,又,∴,又,故向量与的夹角为,故选C。3.设、、是任意的非零平面向量,且相互不共线,则下列命题是真命题的有()。A、B、C、不与垂直D、【参考答案】D【解析...

    2024-04-0701.13 MB0
确认删除?
批量上传
意见反馈
上传者群
  • 上传QQ群点击这里加入QQ群
在线客服
  • 客服QQ点击这里给我发消息
回到顶部