第六节直接证明与间接证明直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.知识点一直接证明知识点一1.综合法利用已知条件和某些数学定义、公理、定理等,经过一系列的__________,最后推导出所要证明的结论,这种证明方法叫作综合法.2.分析法从要证明的出发,逐步寻求使它成立的,直至最...
第七章南方地区活动课认识南方地区和北方地区的区域差异一课时1(1)我国的四大地理区域分别是:1._________、2._________、3.________、4._________。(2)北方地区和南方地区的界线大致和_____mm的年等降水量线,冬季1月____℃等温线接近,沿山脉和河流分布。一读图初步认识2二阅读课本65—66页图文资料,结合南、北方地区的学习,我们应从哪些方面比较自然差异?自然地理差异,可以从地理位置、地形、气候、水文、土壤、植被...
第三节二元一次不等式(组)与简单的线性规划问题简单的线性规划(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识点一知识点一二元一次不等式(组)表示的平面区域知识点二各个不等式所表示平面区域的________不等式组包括_________Ax+By+C≥0不包括_________直线Ax+By+C=0某一侧的所有...
第八节函数与方程函数的零点与方程的根(1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图象,能够用二分法求相应方程的近似解.知识点一知识点一知识点二函数的零点1.函数的零点(1)定义对于函数y=f(x)(x∈D),把使成立的实数x叫作函数y=f(x)(x∈D)的零点.(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系.方程f(x)=0有实数根⇔函数y=f(x)的图...
第二节同角三角函数关系式与诱导公式同角三角函数的关系式和诱导公式(1)能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式,会用三角函数线解决相关问题.(2)理解同角三角函数的基本关系式:sin2x+cos2x=1,sinxcosx=tanx,熟运用公式化、求与明的三角恒等式.练简值证简单知识点一知识点一知识点二同角三角函数基本关系式1.平方关系:(α∈R).2.商数关系:____________________________....
第一讲人体内环境的稳态及实例[观考情考纲考频]1.稳态的生理定义(Ⅱ)[☆☆]2.体温调节和水盐调节(Ⅱ)[☆☆]1一、内环境的组成与理化性质1.体液的组成体液细胞内液约占2/3细胞外液约占1/3组成:、、淋巴等内环境概念:由细胞外液构成的液体环境叫作三者关系:―→淋巴淋巴循环血浆组织液内环境血浆组织液22.血浆的成分____________含量明显高于组织液和淋巴中的含量特点营养物质...
1单元语法聚焦九语法点击现在完成时(二)现在完成时态中的has/havebeentosp.意为“去过某地”,即现在已经回到说话地;has/havegonetosp.意为“去了某地”,表示现在还没有回到说话地;has/havebeeninsp.表示“在某地待了多长时间”。注意:如果看到表示次数的词,例如threetimes,twice,once等时,要用has/havebeento表示“去过多少次了”。2单元语法聚焦九实战演练()1.MissGaoisnthere.She________tothebusstationtomeetMr.Brown.A...
1单元语法聚焦七语法点击形容词、副词的比较级和最高级1.形容词及副词比较级和最高级的组成:(1)规则变化:①一般在原级词尾加er或-est。wild→wilder→wildest,tall→taller→tallest②以不发音的字母e结尾的只加r或-st。late→later→latest,fine→finer→finest③以辅音字母加y结尾的双音节词,先变y为i,再加er或-est。heavy→heavier→heaviest,funny→funnier→funniest2单元语法聚焦七④以重读闭音节结尾且...
扎红头绳1贺敬之,当代诗人,剧作家。1924年生于山东省峰县(今枣庄)。1937年就读于滋阳县山东省立第四乡村师范。抗日战争爆发后去湖北,就读于国立湖北中学,1939年随校赴四川,开始诗歌创作,作品多反映故乡的农村斗争生活。1940年到延安,1945年和丁毅等同志集体创作了歌剧《白毛女》。解放后,创作有《回延安》、《放声歌唱》、《雷锋之歌》等优秀诗篇。粉碎“四人帮”后,曾先后担任过文化部副部长,中宣部副部长等职务。...
第六节几何概型几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.知识点几何概型知识点1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的_________________成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果.(2)等可能性:每个试验结果的发生具有.长度(面积或体积)有无限多个等可能性知识点知识点3.几何...
1单元语法聚焦三语法点击could表建议或许可时的用法1.用法用法句型例句有礼貌地提出请求Couldyoupleasedo?请你做好吗?Couldyoudo?你能做吗?Couldyoupleasetakeouttherubbish?请你把垃圾倒掉好吗?CouldyouturnontheTVforme?你能帮我打开电视吗?请求许可或允许CouldIpleasedo?请问我可以做吗?CouldIdo?我可以做吗?CouldIpleasegoout?请问我可以出去吗?CouldIuseyourbike?我可以用你的自行车吗?2单元语法聚焦三2....
第3节机械效率第3节机械效率1第3节机械效率自主学习问题导学图12-3-12新知梳理一有用功、额外功和总功有用功人们为了达到某种目的而必须要做的功,叫做有用功,记作W有。额外功完成某项任务时,不需要但又不得不做的功,叫做额外功,记作W额。总功__________和__________之和是总共做的功,叫做总功,记作W总。第3节机械效率有用功额外功3[点拨]使用机械时,人们所做的功都不会少于不用机械时所做的功,也就是使用任何机械都...
第一节平面向量的概念及其线性运算向量的线性运算及几何意义(1)理解平面向量的有关概念及向量的表示方法.(2)掌握向量加法、减法、数乘的运算及其几何意义.(3)理解两个向量共线的含义.(4)了解向量线性运算的性质及其几何意义.知识点一向量的有关概念长度____且方向____的向量相反向量长度_____且方向_____的向量相等向量表示两个向量的有向线段所在的直线____或____,则这两个向量叫作平行向量,平行向量又叫_____向量.规定:...
第3节动能和势能第3节动能和势能1第3节动能和势能自主学习问题导学图13-1-12第3节动能和势能新知梳理一能量定义物体能够____________,我们就说这个物体具有能量,简称能。单位________,简称______,符号为______。对外做功焦耳焦J3第3节动能和势能[点拨](1)能量是表示物体做功本领大小的物理量,即能量可以用能够做功的多少来衡量。(2)一个物体“能够做功”,并不是一定“要做功”,也不是“正在做功”或“已经做功”。如:...
单元微讲座微讲座关于跨膜层数的计算方法物质穿膜运输问题是学生解题的难点之一,其原因有两个方面,首先是学生对题目涉及的生物体局部结构不清楚,无从着手,其次是对物质是跨膜还是非跨膜(即膜融合)进出细胞,不能作出正确判断。另外学生缺乏空间想象能力,不会将生物体局部结构进行放大,并利用图示表示出来。1微讲座1.物质在细胞内不同细胞器之间的跨膜分析(1)线粒体与叶绿体之间的跨膜a为O2,b为CO2,由产生场所到利用场...
1自主预习SectionA短语互译1.去滑冰______________________2.不同种类的____________________________3.鼓励某人做某事________________________________.__4.haveagreattime______________________5.acoupleof_____________________________________goskatingdifferentkindsofencouragesb.todosth玩得开心两个;一对;几个2SectionA句型在线1.“你曾经去过科学博物馆吗?”“是的,我去过。”—______________________________...
1自主预习SectionBSelfCheck短语互译1.赠送;捐赠_____________________2.(外貌或行为)像____________________3.建立;设立_______________4.影响;有作用_________________________5.和相似_________________________6.因而兴奋___________________________7.fixup_____________________8.helpsb.out_______________________9.beableto___________________________10.forexample_______________________giveawaytakeafters...
第二节命题及其关系、充分条件与必要条件1.命题及其关系(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.充分条件与必要条件理解必要条件、充分条件与充要条件的意义.知识点一知识点一知识点二1.命题的概念在数学中把用语言、符号或式子表达的,可以的陈述句叫作命题.其中的语句叫真命题,的语句叫假命题.2.四种命题及相互关系命题、四种命题及相互关系判...
11、了解传染病的病因、传播途径和预防措施。2、了解艾滋病病原体、传播途径及预防措施。3、掌握人体的免疫功能,理解和区分人体的两种免疫类型,了解计划免疫。2一、什么是传染病?请同学们比较近视眼和结膜炎发病的原因:近视眼——患者自身眼部结构发生变化引起的,不可以传染。结膜炎——由外来的致病细菌引起的,具传染性。复习任务一传染病及其预防31、传染病的概念由病原体因起的(细菌、真菌、病毒和寄生虫...
第六节双曲线1.双曲线的标准方程了解双曲线的定义、几何图形和标准方程.2.双曲线的几何性质知道双曲线的简单几何性质.知识点一知识点一双曲线的定义知识点二2a<|F1F2|______为双曲线的焦距_____________=2aF1,F2为双曲线的____M点的轨迹为双曲线平面内的动点M与平面内的两个定点F1,F2结论2结论1条件||MF1|-|MF2||焦点|F1F2|知识点一知识点一知识点二易误提醒双曲线的定义中易忽视2a<|F1F2|这一条件.若2a=|F1F2|,则轨...