考点练17函数的基本性质—奇偶性1.函数y=-x2-4x+1,x∈[-3,1]的最大值是()A.-4B.0C.5D.42.函数f(x)A.关于y轴对称B.关于直线y=x对称C.关于坐标原点对称D.关于直线y=-x对称3.已知函数f(x)=2x-3,当x≥1时,恒有f(x)≥m成立,则实数m的取值范围是()A.RB.(-∞,-1]C.[-1,+∞)D.⌀4.若定义在R上的偶函数f(x)在区间(0,+∞)内是增函数,则()A.f(3)>f(-2)>f(-π)B.f(-π)<f(-2)<f(3)C.f(-2)<f(3)<f(-π)D.f(-4)<f(-π)<f(3)5.若f(x)=ax2+bx+c(...
结识抛物线第二章二次函数学习目标(1分钟)1、会用描点法画二次函数y=x2和y=-x2的图象;2、根据函数y=x2和y=-x2的图象,直观地了解它的性质.自学指导(一)3分钟阅读课本P41----P42,思考:,1.你会用描点法画二次函数y=x2的图象吗?2.你能不能结合二次函数y=x2的图象,说一说它的有关性质?点拔:数形结合,直观感受观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:xy=x2x-3-2-10123y=x2xy=x29410149画函数图象的基...
5.6函数y=Asin(ωx+φ)1.由图象求解析式;2.函数y=Asin(ωx+φ)图象的对称性;3.函数y=Asin(ωx+φ)性质的综合应用;4.相位、初相等概念的理解;5.三角函数图象变换.一、单选题1.(2020镇原中学高一期末)为得到的图象,只需要将的图象()sin23yxsin2yxA.向左平移个单位B.向左平移个单位36C.向右平移个单位D.向右平移个单位36【参考答案】D【解析】因为,所以为得到的图象,只需要将的图象...
绝密★启用前|满分数学命制中心2020-2021学年上学期第三章函数的概念与性质单元测试卷(基础版)高一数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题参考答案后,用2B铅笔把答题卡上对应题目的参考答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他参考答案标号。写在本试卷上无...
考点练16函数的基本性质—单调性与最值1.下列函数中,在区间(0,+∞)内是增函数的是()A.y=-x2+1B.y=x2-2C.y=-2x+1D.y2.如果函数f(x)在区间[a,b]上单调递增,那么对于任意的x1,x2∈[a,b](x1≠x2),下列结论中不正确的是()A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.若x1<x2,则f(a)<f(x1)<f(x2)<f(b)D.>03.已知函数f(x)=2x2-mx+3,当x(∈-2,+∞)时,f(x)是增函数,当x(∈-∞,-2)时,f(x)是减函数,则f(-1)等于()A.-3B.13C.7D.14.如图是定义在区间[-5,5...
备作业3.1.1函数的最大(小)值[A级基础稳固]1.函数f(x)=的最大值为()21,1,1,1xxxxA.1B.2C.D.1213解析:选B当x≥1时,函数f(x)=为减函数,此时f(x)在x=1处取得最大值,最大值为f(1)=1;当x<1时,函数f(x)=-x2+2在x=0处取得最大值,最大值为1xf(0)=2.综上可得,f(x)的最大值为2,故选B.2.已知函数f(x)=,其定义域是[-8,-4),则下列说法正确的是()211xxA.f(x)有最大值,无最小值53B.f(x)有最大值,...
3.4函数的应用(一)A组-[应知应会]1.(2020春•南郑区校级期中)某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为x千米时,运费与仓储费之和最小,最小为y万元.则x和y分别是()A.2和10B.2和20C.2和20D.和102.(2020•衡阳模拟)2020年3月,国内新冠肺炎疫情得到有效...
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的参考答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的参考答案无效!2020-2021学年上学期第三单元单元测试卷(巅峰版)高一数学答题卡请在各题目的答题区域内作答,超出黑色矩形边框限定区域的参考答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的参考答案无效!一、选择题(每小题5分,共60分)1[A][B][C][D]2[A][B][C][D]3[A][B][C][D...
3.2函数的基本性质1.判断函数的单调性;2.求函数的单调区间;3.用定义证明函数的单调性;4.函数单调性的应用;5.抽象函数单调性的判断与证明;6.求函数的最值;7.实际应用中的函数最值问题;8.函数奇偶性的判断;9.奇、偶函数图象的应用;10.利用函数的奇偶性求解析式;11.函数的奇偶性与单调性综合问题一、单选题1.(2019黄梅国际育才高级中学高一月考)下列函数中,在定义域内既是奇函数又是增函数的是()A.B.C.D.()1fx...
绝密★启用前|满分数学命制中心2020-2021学年上学期第三单元函数的概念与性质单元测试卷(巅峰版)高一数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题参考答案后,用2B铅笔把答题卡上对应题目的参考答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他参考答案标号。写在本试卷上...
3.1函数的概念及其表示A组-[应知应会]1.(2019秋•景德镇期中)下列各个选项中,其中表示定义域为,值域为的函数的是A.B.C.D.【分析】根据函数的定义判断即可.【解答】解:根据函数的定义,集合中的每个元素都要有对应,且在中的对应元素要唯一,错,函数的值域不是;错,有一对多,错,有一对多,故选:.2.(2020•拉萨二模)函数的定义域为A.或B.或C.D.【分析】由根式内部的代数式大于等于求解一元二次不等式得参考答案.【...
备作业3.2.3函数的奇偶性[A级基础稳固]1.下列图象表示的函数中具有奇偶性的是()解析:选B选项A中的图象关于原点或y轴均不对称,故排除;选项C、D中的图象所示的函数的定义域不关于原点对称,不具有奇偶性,故排除;选项B中的图象关于y轴对称,其表示的函数是偶函数.故选B.2.函数y=的奇偶性是()2|4|49xxA.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:选A由9-x2>0可得-3<x<3,所以x-4<0,令f(x)=,则f(x...
3.2函数的基本性质A组-[应知应会]1.(2019秋•湖北期末)定义在上的奇函数满足,,则(1)的值是A.B.C.1D.2【分析】由已知可求函数的周期,结合已知即可求解.【解答】解:奇函数满足,故,则(4)(1),则(1).故选:.2.(2020•汕头二模)设是定义在上的奇函数,且对任意实数恒有,当,时,,则(3)A.0B.3C.D.【分析】由已知可转化(3)(1),然后代入已知函数解析式即可直接求解.【解答】解:由题意可得,,,,时,,则(3)...
第三章函数的概念与性质一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f(x)由下表给出,则f[f(3)]等于()x1234f(x)2341A.1B.2C.3D.42.(2020内蒙古集宁一中高三月考)下列四组函数中,表示同一函数的是()A.B.C.D.3.函数的定义域为A.B.C.D.[来源:学.科.网Z.X.X.K]4.设,则等于()A.1B.0C.2D.-15.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g...
3.3幂函数A组-[应知应会]1.(2019秋•辽宁期末)已知幂函数为奇函数,则21()(55)mfxmmxm()A.1B.4C.1或4D.2【分析】利用幂函数的性质即可求解.【解答】解:函数为幂函数,21()(55)mfxmmx,解得:或4,2551mm1m又函数为奇函数,()fx4,m故选:.B2.(2019秋•三明期末)已知幂函数的图象经过点,则实数的值是21()mfxx(2,8)m()A.B.C.2D.3112【分析】把点的坐标代入幂函数解析式...
第四章指数函数与对数函数4.5函数的应用(二)一、函数的零点与方程的解1.函数的零点对于一般函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.2.方程、函数、图象之间的关系方程f(x)=0有实数解⇔函数y=f(x)有⇔函数y=f(x)的图象与x轴有.3.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条的曲线,且有.那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得,这个c也就是方程f(x)=0的解.【想...
绝密★启用前|满分数学命制中心2020-2021学年上学期第二单元单元测试卷(基础版)高一数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题参考答案后,用2B铅笔把答题卡上对应题目的参考答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他参考答案标号。写在本试卷上无效。3.回答第...
3.3幂函数A组-[应知应会]1.(2019秋•辽宁期末)已知幂函数为奇函数,则21()(55)mfxmmxm()A.1B.4C.1或4D.22.(2019秋•三明期末)已知幂函数的图象经过点,则实数的值是21()mfxx(2,8)m()A.B.C.2D.31123.(2019秋•下城区校级期末)若一个幂函数的图象经过点,则它的单调增区间是1(2,)4()A.B.C.D.(,1)(0,)(,0)R4.(2019秋•杨浦区校级期末)已知常数,如图为幂函数的图象,则的值可以...
3.1函数的概念及其表示方法1.函数概念的理解;2.求函数的定义域;3.求函数值(值域);4.函数的三种表示方法;5.求函数解析式;6.分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9.分段函数与方程、不等式综合问题一、单选题1.(2020全国高一课时练习)设,则等于()1,01,01,0xxfxxx0ffA.1B.0C.2D.-1【参考答案】C【解析】1,0()1,01,0xxfxxx,(0)1f...