2024-04-11047.04 KB36页
2024-04-11047.54 KB11页
2024-04-110127.54 KB4页
2024-04-1104.27 MB20页
2024-04-110101.54 KB14页
2024-04-11053 KB14页
2024-04-1106.31 MB34页
2024-04-1101.2 MB18页
2024-04-11070.54 KB12页
2024-04-110695.54 KB77页
2024-04-11010.97 MB37页
2024-04-1102.13 MB223页
2024-04-110165.04 KB37页
2024-04-11070.54 KB1页
2024-04-110134.54 KB60页
2024-04-1101.31 MB8页
2024-04-110571.72 KB11页
2024-04-1105.52 MB47页
2024-04-110650.04 KB8页
微分方程数值措施大作业一、操作任务给定初值问题0<x<1,0<t<0.1u(0,t)=u(1,t)=00<t<0.1u(x,0)=sinπx0≤x≤1研究上述问题Grank-Nicholson格式旳稳定性二、差分格式先空间方向离散:取x=xj得:,即得半离散格式:记u(t)=[u(x1,t),u(x2,t),u(xN-1,t)]T,,j=0,1,2Nj=0,1,2NF(t)=[f(x1,t)],f(x2,t)]f(xN-1,t)]T格式变为:U(0)=[]T用梯形格式——Grank-Nicholason格式则格式变为:三、程序functionx=EqtsForwardAndBackward(L,D,U,b)... 2024-04-110172.04 KB8页