2024-06-080836.83 KB7页
2024-06-080836.83 KB7页
2024-06-080857.54 KB10页
2024-06-080885.01 KB10页
2024-06-080824.44 KB8页
2024-06-080824.44 KB8页
向量内积向量模长向量夹角Schmidt正交化方法向量内积与正交向量组线性代数与空间解析几何知识点讲解向量正交向量内积与正交向量组1.向量内积评注:这是3维几何向量内积(点积、点乘、数量积、标量积)的推广.定义:对任意的TT11(,,),(,,)Rnnnxxxyyy,称T11[,]nnxyxyxyxy为向量x和y的内积.向量内积与正交向量组内积的性质:(2)[,][,][,](R),[0,]0;xyxyxyx(3)[,][,][,],[,][,][,];xyzxzyz... 2024-06-080419.38 KB12页
向量内积向量模长向量夹角Schmidt正交化方法向量内积与正交向量组线性代数与空间解析几何知识点讲解向量正交向量内积与正交向量组1.向量内积评注:这是3维几何向量内积(点积、点乘、数量积、标量积)的推广.定义:对任意的TT11(,,),(,,)Rnnnxxxyyy,称T11[,]nnxyxyxyxy为向量x和y的内积.向量内积与正交向量组内积的性质:(2)[,][,][,](R),[0,]0;xyxyxyx(3)[,][,][,],[,][,][,];xyzxzyz... 2024-06-080419.38 KB12页
2024-06-080910.7 KB8页
2024-06-080832.41 KB7页
2024-06-080924.33 KB9页
2024-06-080875.08 KB8页
2024-06-080678.37 KB13页
2024-06-080791.85 KB14页
向量组的极大无关组与秩线性代数与空间解析几何知识点讲解向量组的极大无关组与秩的概念有关结论1.向量组的极大无关组与秩的概念定义方法1:若向量组A与向量1,2,,r满足(ⅰ)1,2,,rA;(ⅱ)向量1,2,,r线性无关;(ⅲ)向量组A中的每个向量均可由1,2,,r线性表示,则称1,2,,r为向量组A的一个极大无关组,极大无关组中所含向量的个数为向量组A的秩.向量组的极大无关组与秩1.向量组的极大... 2024-06-080884.67 KB17页
向量组的极大无关组与秩线性代数与空间解析几何知识点讲解向量组的极大无关组与秩的概念有关结论1.向量组的极大无关组与秩的概念定义方法1:若向量组A与向量1,2,,r满足(ⅰ)1,2,,rA;(ⅱ)向量1,2,,r线性无关;(ⅲ)向量组A中的每个向量均可由1,2,,r线性表示,则称1,2,,r为向量组A的一个极大无关组,极大无关组中所含向量的个数为向量组A的秩.向量组的极大无关组与秩1.向量组的极大... 2024-06-080884.66 KB17页
向量组线性相关性有关结论向量组的线性相关性(二)线性代数与空间解析几何知识点讲解1.线性相关性有关结论(1)若可由向量组1,2,,m线性表示,则表示法唯一的充分必要条件为1,2,,m线性无关;表示法不唯一的充分必要条件为1,2,,m线性相关.如1222,11线性相关,33,12122;若1211,01线性无关,23,122.向量组的线性相关性(二)... 2024-06-080552.19 KB10页
2024-06-08118.93 MB53页
向量组线性相关、线性无关的概念有关结论向量组的线性相关性(一)线性代数与空间解析几何知识点讲解向量组的线性相关性(一)1.向量组线性相关、线性无关的概念线性相关:若存在不全为零的数1,2,,mkkk使得11220mmkkk成立,则称向量组1,2,,m线性相关.线性无关:若使11220mmkkk成立,必有120mkkk,则称向量组1,2,,m线性无关.2.有关结论(1)含有零向量的向量组必线性相... 2024-06-080412.5 KB7页
2024-06-0808.07 MB37页