实对称阵与二次型C7例例11例例11解解解解设1,,nm,[T]ijmmB,求证:1,,m线性无关||0B.TT111TT1mmmmBT11T[,,]mm1,,()mrAm线性无关(T)()rAArBm||0B[1,,m]:A令(T)()rAArA(第四章的例题)TAA;例例22例例22解解解解1,PP设为正交阵的特征值求证也为矩阵的特征值:P为正交阵11;P为矩... 2024-06-0801.53 MB8页
2024-06-080891.14 KB6页
2024-06-0801.01 MB8页
方阵的对角化例例11例例11解解解解若123,,是方阵A的不同特征值,123,,ppp分别为对应它们的特征向量,试用范德蒙德行列式证明向量组123,,ppp线性无关.1122330kpkpkp1112223330kpkpkp2221112223330kpkpkp211222112233332111,,0,0,0kpkpkp1122330kpkpkp112233,,0,0,0,kpkpkp,;由范德蒙德行列式知这个蓝色方阵可逆1122... 2024-06-0801.64 MB11页
方阵的对角化例例11例例11解解解解若123,,是方阵A的不同特征值,123,,ppp分别为对应它们的特征向量,试用范德蒙德行列式证明向量组123,,ppp线性无关.1122330kpkpkp1112223330kpkpkp2221112223330kpkpkp211222112233332111,,0,0,0kpkpkp1122330kpkpkp112233,,0,0,0,kpkpkp,;由范德蒙德行列式知这个蓝色方阵可逆1122... 2024-06-0801.64 MB11页
2024-06-0811.16 MB6页
2024-06-0801.05 MB7页
向量组的线性相关性例例11例例11解解解解121112,,,,:,rrrr线性无关的向量组可由个向量线性表示C设有三个n维向量组1:,,sA;1:,,tB;11:,,,,,stC,它们的秩分别为123,,rrr,求证312rrr„.,,设向量组的极大无关组分别为ABC32111:1;:;:,,,,,,.rrrCAB312rrr„,;中向量若来自其可由A线性表示CA,;中向量若来自其可由B线性表示CB例例22例例22解解解解1,Am在此等式两边左乘得... 2024-06-0801.66 MB9页
向量组的线性相关性例例11例例11解解解解121112,,,,:,rrrr线性无关的向量组可由个向量线性表示C设有三个n维向量组1:,,sA;1:,,tB;11:,,,,,stC,它们的秩分别为123,,rrr,求证312rrr„.,,设向量组的极大无关组分别为ABC32111:1;:;:,,,,,,.rrrCAB312rrr„,;中向量若来自其可由A线性表示CA,;中向量若来自其可由B线性表示CB例例22例例22解解解解1,Am在此等式两边左乘得... 2024-06-0801.66 MB9页
2024-06-080949.8 KB4页
2024-06-0801.06 MB6页
矩阵例例11例例11解解解解设0nnA为实方阵,且T()ijijAaAA:(1)求证A可逆;(2)当3n为奇数时,求||A的值.TAA||若A0,则0,0A,||0,.AA总之可逆(1)(1)||AAAAAET||;AAAE(0);与A矛盾0(,1,2,,)aijijn()||A0要证实22111T221nnnnaaAAaa(2)(2)(2)(2)2||1nA2||||nAA||1A例例11例例11解解解解||AAAAAETAAT||AAAE(2)n... 2024-06-0811.27 MB9页
2024-06-080971.96 KB13页
矩阵例例11例例11解解解解设0nnA为实方阵,且T()ijijAaAA:(1)求证A可逆;(2)当3n为奇数时,求||A的值.TAA||若A0,则0,0A,||0,.AA总之可逆(1)(1)||AAAAAET||;AAAE(0);与A矛盾0(,1,2,,)aijijn()||A0要证实22111T221nnnnaaAAaa(2)(2)(2)(2)2||1nA2||||nAA||1A例例11例例11解解解解||AAAAAETAAT||AAAE(2)n... 2024-06-0801.27 MB9页
2024-06-0801.06 MB8页
2024-06-0801.49 MB7页
2024-06-0801 MB6页
2024-06-0803.87 MB20页
2024-06-080918.43 KB4页
2024-06-0803.87 MB20页