连续函数的定义拓扑学连续:设和是两个拓扑空间.函数连续的,如果对于中的每一个开子集,是中的一个开子集.注.如果值域的拓扑是由基给出的,那么证明连续,就只要证明每一个基元素的原像是开的即可.这是因为的任意开集,可以写成基元素的并,即因此如果每一个是开的,那么就是开的.连续函数的定义注.如果的拓扑是由子基给出的,那么为了证明连续,就只要证明每一个子基元素的原像是开的即可.这是因为的任意基元素,可以写成子基元素的有限... 2024-05-200286.13 KB6页
连续函数的性质拓扑学定理1.设和是两个拓扑空间,下列条件是等价的:(1)连续.(2)对于的任意一个子集,有.(3)对于的任意一个闭集,是中的一个闭集.(4)对于每一个和每一个包含的开集,存在包含的一个开集,使得.证:(1)(2).设连续.是的一个子集.若,设是包含的一个开集,则是中包含的一个开集,它必定与相交于某点,于是与有交点.因此得到.连续函数的性质(2)(3).设是的一个闭集,,则.对于,有.于是,.所以得到.(3)(1)设是的一个开集,,则.由于是... 2024-05-200232.22 KB5页
2024-05-200179.01 KB4页
构造连续函数拓扑学定理1.设和都是拓扑空间.(1)(常值函数)若将整个映成的一个点,则连续.(2)(内射)若为的一个子空间,则内射连续.(3)(复合)若和连续,则映射连续.(4)(限制定义域)设连续,为的一个子空间,则限制映射连续.证:(1)设是中的一个开集.若包含点,则.若不包含点,则.无论哪一种情况都有为中的开集.(2)若是的一个开集,则是的一个开集.构造连续函数(3)若是的一个开集,则是的一个开集,是的一个开集.因为,所以是的一个开集.(4)函... 2024-05-200330.52 KB7页
2024-05-200391.57 KB8页
一般情形的积拓扑拓扑学一般情形的积拓扑定理2.映射定义为,其中对每一个,.设具有积拓扑,则连续当且仅当每一个函数连续.证:,设是积空间到其第个坐标空间上的投射.是连续的,这是因为如果是的开集,则集合就是的积拓扑的一个子基元素.若连续,则复合映射是连续的.对于的积拓扑,其典型的子基元素就是,其中,是的开集.因为,所以.又因为连续,因此这个集合是的一个开集.■一般情形的积拓扑例1.考虑的可数无限积.对于每一个,.定义函数如下,... 2024-05-200252.21 KB5页
2024-05-200300.45 KB6页
2024-05-2001.4 MB9页
2024-05-2001.23 MB14页
2024-05-200808.5 KB15页
2024-05-200224.68 KB5页
2024-05-200264.04 KB6页
2024-05-200250.46 KB5页
2024-05-200373.04 KB7页
2024-05-200440.56 KB10页
实直线上的紧致子空间拓扑学实直线上的紧致子空间CONTENT极值定理实直线上的紧致子空间定理1:中任何一个有界闭区间都是紧致的.证:给定,设是的一个开覆盖.下面证明存在的一个有限子族覆盖.第一步.首先证明:若,则存在,使得区间可由中一个成员覆盖.选取中包含的一个开集,则中包含一个的基元素,选取,则,即可由中一个成员覆盖.第二步.设,则由第一步可见这样的一定存在(取),从而是非空的.令是集合的上确界,则.实直线上的紧致子空间第... 2024-05-200284.7 KB5页
2024-05-200329.21 KB7页
列紧性与序列紧致性拓扑学列紧性CONTENT序列紧致性列紧性定义:如果空间中任何一个无穷子集都有聚点,则称是列紧的.定理1:紧致性蕴含着列紧性,但反之不真.证:设是一个紧致空间.给定的一个子集,我们要证明:若为无限集,则必有聚点.假设没有聚点,那么是一个闭集.于是,对于每一个,我们可以选取一个包含的开集,使得与的交仅含单点.紧致空间便被开集和这些开集所覆盖,那么其中的有限个开集就构成了的覆盖.由于与无交,并且每一个仅含有的... 2024-05-200319.07 KB7页
2024-05-200285.84 KB5页
2024-05-200295.35 KB6页