2024-06-080745 KB11页
2024-06-080445.48 KB9页
2024-06-080832.5 KB12页
2024-06-0802.2 MB37页
2024-06-0801.12 MB7页
2024-06-0801.77 MB40页
2024-06-080413.59 KB8页
2024-06-080161.34 KB5页
2024-06-0806.38 MB17页
2024-06-080393.33 KB7页
5.4.1实对称矩阵的性质定理1实对称矩阵的特征值为实数.此定理表明阶实对称矩阵一定有个实特征值.证明已知要证11122212,,,AppApp120,Tpp定理2设,是实对称矩阵的两个特征值,是对应的特征向量,若,则正交.即实对称矩阵的不同特征值对应的特征向量是相互正交的.12p,p12p,p于是证毕.1121121212()()TTTTTppppApppAp12122212TTTpAppppp1212()0Tpp12120,Tpp即正交.12p,p定... 2024-06-080460.71 KB7页
2024-06-080178.39 KB11页
2024-06-080285.2 KB11页
5.4.2实对称矩阵的对角化定理设阶实对称矩阵,则必有正交矩阵,使,其中是以的个特征值为对角元素的对角阵.证明思路:回顾对于𝑝𝑖1,𝑝𝑖2,⋯,𝑝𝑖𝑟𝑖⟶𝑞𝑖1,𝑞𝑖2,⋯,𝑞𝑖𝑟𝑖⟶𝑃=(𝑞11,𝑞12,⋯,𝑞1𝑟1,⋯⋯,𝑞𝑠1,𝑞𝑠2,⋯,𝑞𝑠𝑟𝑠).利用正交矩阵将对称矩阵对角化的方法1.求对称矩阵的特征值;2.由=0求出的线性无关的特征向量;3.将特征向量正交化;4.将特征向量单位化;5.构造正交矩阵.解的特征多项式为例1设求一个正交矩... 2024-06-080420.64 KB12页
2024-06-080337.52 KB5页
2024-06-080965.12 KB6页
2024-06-08073 KB12页
2024-06-080939.5 KB7页
2024-06-0808.62 MB46页
2024-06-080190.12 KB6页