引例你在本次考试中是否作弊?是否你在本次考试中是否没有作弊?是否12,,,,,(1),,,1,2,,;(2).,,,.nnnEBBBEBBijijnBBBBBB为为样义定的一个划分本空间称则的一组事件若为试验的样本空间设ij1212B1B2B3Bn1Bn如,Ai:“掷出i点”i=1,2,6A1,A2,A6,为样本空间Ω的一个划分样本空间的划分全概率公式全概率公式B1B2B3Bn1BnA为的一个划分,且则()0,1,2,,PBin)(i()()()()()()()nnPAPABPBPABPBPABPB... 2024-04-170564.21 KB8页
例:小李每天上班有三种出行方式,步行、骑自行车、乘公交车,选择三种出行方式的概率分别为0.4、0.4、0.2。三种方式导致上班迟到的概率分别是0.01、0.02、0.1。求(1)小李上班迟到的概率。(2)若今天小李上班迟到了,他最大可能是采用哪种出行方式。引例贝叶斯公式且则()0,()0,1,2,,PAPBin)(iPBAin)(PABPBPABPBjjjniii()()()=,1,2,()()1设试验的样本空间为,为任意事件,为的一个划分,EAnBBB,,12B1B2B3... 2024-04-170457.34 KB6页
2024-04-170341.17 KB5页
某即开型彩票中头奖的概率为0.0001,小李买了1000张此种彩票,问小李中头奖的次数不小于2的概率是多少?X~B(1000,0.0001),C10.99990.00010.9999100010001999设1000张彩票中头奖的张数为X,则解:例:故所求概率为PXPXPX{2}1{0}{1}二项分布泊松分布npn()引例0,1,2,,{},0,1,2,,而取各松分布泊或为记的服从参数为是常数则称中其个值的概率为随机变量所有可能取的值为设XPXXkPX... 2024-04-170526.58 KB10页
2024-04-170497.04 KB14页
2024-04-170193.81 KB2页
定义fxXxRFxfttXXFxfxx(),.,()()d,,(),(),率密度概续型随机变量连的概率密度函数简称称为中其为则称有对于使存在非负可积函数的分布函数对于随机变量若ofx()F(x)xFx连续()x定义的概率密度函数简称概率密度称为中其为连续型随机变量则称有对于使存在非负可积函数的分布函数对于随机变量若fxXxRFxfttXXFxfxx(),.,()()d,,(),(),性质ofx()F(x)x(1)fx()0;fxx(2)()d1;PxXxFxFx(3){... 2024-04-170456.23 KB9页
2024-04-170136.11 KB3页
xofx()ab1balbaPllxofx()ab1ba义定为记服从均匀分布在区间称则它其具有概率密度连续型随机变量设XUabXabbafxaxbX~(,).(,),0,,(),,1区间内的可能性是相同的子中任意等长度的,则落在区间XUabXab.~(,)(,)等可能性均匀分布均匀分布的本质——几何概型分布函数xoFx()ab1xbbaFxftdtaxbxaxax1,.()(),,0,,均匀分布的计算,有,则对... 2024-04-170390.37 KB8页
2024-04-170246.31 KB8页
的概率密度为连续型随机变量设σfxxXσμxπ2()e,,12()22参斯分布或的为数高态分布正服从为常数则称其中μσXσσμ,,(0),,2记为μσX~N(,).2定义σfxxσμxπ2()e,,12()22对称关于μfxx(1)();σμπ2(,)1取得最大值时当σfxμxπ2(2),();1时当xfx(3),()0;μμ处有拐点曲线在μσx(4);几何特征xfx()102轴作平移变换着形的形状不变只是沿图的大小时改变固定当x... 2024-04-170799.73 KB13页
2024-04-1701.05 MB22页
2024-04-170445.02 KB9页
2024-04-170736.15 KB10页
有使对于任意实数在非负的函数存如果的分布函数对于fxyxyXYFxy(,),(,)(,),定义二维连续型随机变量的联合概率密度和变量机的概率密度或称为随为二维随机变量称是连续型的二维随机变量函数称则XYXYXYfxy.(,),(,),(,)Fxyfuvuvyx(,)(,)dd,fxyxy(2)(,)dd1.PXYGfxyxyG{(,)}(,)dd.(1)fxy(,)0.性质平面上的一个区域则设G是xoy(3),二维连续型随机变量连续则有在点若xyfxyxyfxyFxy... 2024-04-170212.3 KB7页
2024-04-170914.3 KB16页
两个常用的分布第三章多维随机变量及其分布1.均匀分布则称(X,Y)在D上服从均匀分布.具有概率密度若是平面上的有界区域其面积为设XYDS,,,()两个常用的分布定义其他SfxyxyD0,.(,),(,),1的子区域,则是内面积为若随机变量上服从均匀分布在DDSXYD,,()11两个常用的分布SSPXYDdxdySD(,)1111在的位置与形状无关关(成正比),而与有的面积的概率仅与子区域在内的子区域落DDXYDDD.(,)111求服从均匀分布上=在... 2024-04-170452.26 KB9页
2024-04-170914.29 KB16页
别记为分各自都是随机变量它们也有自己的分布函数而作为一个整体具有联合分布函数维随机变量二FxFyFxyXYXYXY(,.,),()(),(),,,,边缘分布和的边缘分布函数为的联合分布函数分别称对于二维随机变量相FxFyXYXYXY,).(()(),,缘分布边应地也有边缘概率密度和边缘分布律的概念将它们统称为相.,,边缘分布函数第三章多维随机变量及其分布边缘分布函数FxyPXxYy(,){,},FxPXx(){},PXx{}PXxY{,}Fx(,)FX(x)的边... 2024-04-170578.36 KB18页
2024-04-170627.59 KB8页