2024-04-170414.45 KB6页
2024-04-17015.61 MB255页
已知显著性水平为α,下面讨论比较两个正态总体均值、方差的假设检验.X~N(,)112Y~N(,)222XXXn,,...,121YYYn,,...,122XY总体样本相互独立样本均值样本方差S12S22两个正态总体:比较两个正态总体均值的检验已知与1.1222X1无偏估计Y2−−+=−−−nnZNXY~0,1()()12122212)(x1-22−z2z2=HH(1):,:012112等价于−=−HH:0,:0012112)(检验统计量:下在NH~0,10)(+=−nnZXY1212... 2024-04-170425.18 KB13页
2024-04-1701.85 MB9页
2024-04-17036.48 MB291页
XNXXXXxxxnn设总体,,未知,为来自总体的样本,样本观测值,给定显著性水平221212~(,),,,,,,.单个正态总体方差的假设检验单个正态总体方差的检验考虑检验问题:是已知的常数其中.02=HH(1):,:;00102222HH(2):,:;00102222,HH(3):,:00102222检验统计量:拒绝域形式:由检验原则确定临界值:,为真或=PCC|H12022,=−=−CnCn(1),(1)11-22222拒绝域:单... 2024-04-170256.98 KB6页
2024-04-17044.16 MB431页
假设检验的一般步骤及备择假设根据问题提出原假设HH1.,;012.确定检验统计量T以及拒绝域形式;根据样本观测值确定是否拒绝H4..0=对给定的,由为真求出拒绝域PTWHW03.{|};知识回顾XNXXXXxxxnn设总体为来自总体的样本样本观测值,给定显著性水平21212~(,),,,,,,,,.单个正态总体均值的假设检验单个正态总体均值μ的假设检验=HH(1):,:;0010HH(2):,:;0010,HH(3):,:0010考虑检验问... 2024-04-170497.4 KB13页
2024-04-1701.9 MB11页
2.12两个常用的二维随机变量1.二维正态分布若二维随机变量(,)XY的概率密度函数为2211222222112212()()()()11(,)exp2,2(1)21(,)xxyyfxyxy其中1212,,,,都是常数,且10,20,||1,则称(,)XY为服从参数为,,,,2121的二维正态分布,常记作(,)XY~,),,,(222121N.不难求得,服从二维... 2024-04-170308.1 KB1页
2024-04-17035.19 MB322页
2024-04-170297.74 KB10页
2024-04-1702.01 MB12页
2024-04-17010.97 MB448页
X~N(,)112Y~N(,)222XXXn,,...,121YYYn,,...,122XY总体样本相互独立样本均值样本方差S12S22两个正态总体:已知置信度为1-α,下面讨论两个正态总体均值差、方差比的置信区间.两正态总体均值差的置信区间μ1-μ2的置信区间μ1-μ2的置信区间已知与()11222X1无偏估计Y2−−+=−−−nnZNXY~0,1,()()12122212)(构造枢轴量x1-22−z2z2+−=−−−−nnPzzXY{}1,()()121222/2/212... 2024-04-170441.73 KB10页
问题的提出定义:问题:如何求参数θ的置信度为1-α的置信区间?12(;),(01),,,,XFxXXXn设总体的分布函数含有一个未知参数对给定值若由样本确定的两个统计量和,满足XXXXXXPXXXXXXnnnn===−11122212112212ˆˆ(,,,)ˆˆ(,,,){ˆ(,,,)ˆ(,,,)}1,−则称随机区间是的置信水平为的双侧置信区间12(ˆ,ˆ)1().求置信区间的步骤:=nnXXXGGXXXG寻求一个样本的函数的分布已知且... 2024-04-170466.54 KB11页
2024-04-1701.82 MB9页
2.11二维连续型随机变量1.定义对于二维随机变量(,)XY的分布函数(,)Fxy,若存在非负可积函数(,)fxy,使得对于任意实数,xy,有(,)=(,)ddxyFxyfuvuv(1)成立,则称(,)XY为二维连续型随机变量,(,)fxy称为(,)XY的概率密度函数,或称为X、Y的联合概率密度函数.由定义,显然有(,)0,(,)d1.fxydxfxyy(2)(,)XY的联合分布函数为(,)P(,)d(,)d.xyFxyXxYyufuvv(3)且在概率密度函数(,... 2024-04-170417.01 KB3页
2024-04-170345.63 KB8页
穿裙子引例1:概率p1p2最大似然估计思想:概率大的事件发生的可能性也大.引例是男还是女?嗯,是女士!>重复独立抛10次硬币,结果出现了4次正面,试估计每次出现正面的概率p是多少?正面引例引例2:出现反面,设现正面出X=0,1,试验10次,样本X1,X2,X10,观测值x1,x2,x10,xi=0或1,则X~B(1,p),反面分析:11221010,,,(1)PXxXxXxpp====−46p=0.5?p=0.4?时,当==−pL0.5(0.5)0.50.59.7710.464时,当==−pL0.4(... 2024-04-170354.71 KB12页