2024-06-080445.48 KB9页
2024-06-080138.21 KB14页
2024-06-080603.5 KB5页
2024-06-080694 KB6页
2024-06-080124 KB2页
2024-06-080190.12 KB6页
•思维导图•重点解析•典型例题思维导图“妙算还从拙中来,愚公智叟两分开。积久方显愚公智,发白才知智叟呆。埋头苦干是第一,熟练生出百巧来。勤能补拙是良训,一分辛苦一分才。”华罗庚重点解析•向量内积的定义及运算性质设有n维向量1212,,,,,,,,TTnnxxxxyyyy内积.1122称[,]nnxyxyxyxy为向量与的xy向量的内积内积满足如下运算性质,,,:xyzn其中为维向量为实数(1)[,][,];xyyx(2)[,][,];... 2024-06-08082.09 MB38页
2024-06-0802.41 MB53页
2024-06-08025.6 MB9页
2024-06-08028.29 MB24页
2024-06-080282.98 KB5页
2024-06-080394.32 KB3页
2024-06-080640.55 KB14页
(1)(),,();RAn当时方程组只有零解此时方程组没有基础解系解集只含一个零向量注(2)方程组的基础解系不是唯一的,S中任意个线性无关的向量都是其基础解系,因而通解的表达式也不唯一.nr0().mnmnnxRrAAnr元齐次线性方程组,当时,方程组的基础解系包含个线性无关的向量121122--12(3)(),,,,,,,nrnrnrnrRArnnrxkkkkkk当时方程组的基础解系含个向量:,.此时方程组的通解可表示为其... 2024-06-080216.87 KB11页
2024-06-0808.62 MB46页
2024-06-080297.41 KB9页
5.1.1向量的内积及性质2本节讨论•向量的内积•向量的长度•向量的正交性定义1内积.一、内积的定义及性质设有n维向量1122,,nnxyxyxyxy1122[,]nnxyxyxyxy令,[,]xyxy称为向量与的[,].TTxyxyyx事实上,内积的运算性质许瓦兹不等式.,,,:xyzn其中为维向量为实数(1)[,][,];xyyx(2)[,][,];xyxy(3)[,][,][,];xyzxzyz(4)[,]0,0[,]0.xxxxx... 2024-06-080419.91 KB13页
2024-06-0804.39 MB129页
,则与共线几何:存在唯一的实数k,使得=k称作:能由线性表示几何:k1k2=k1+k2与不共线,则与,共面存在实数组k1、k2,使得=k1+k2称作:能由,线性表示定义给定向量组,对于任意一组实数,则称为向量组的一个线性组合,称为这个线性组合的组合系数.定义给定向量组,和一个向量,若存在一组实数,使得,则称向量能由向量组线性表示.n=,a1na2n⋮asn2=,a12a22⋮as21=,a11... 2024-06-080287.93 KB6页
2024-06-080607.41 KB13页